#### **Indian Academy of Pediatrics (IAP)**



### STANDARD TREATMENT

**GUIDELINES 2022** 



#### Practicing Pearls for Sickle Cell Disease Management

**Lead Author** 

Vibha Bafna

Co-Authors

**Ankit Parmar, Shruti Kakkar** 

#### **Under the Auspices of the IAP Action Plan 2022**

Remesh Kumar R

**IAP President 2022** 

Upendra Kinjawadekar

Piyush Gupta

IAP President 2021

Vineet Saxena
IAP HSG 2022–2023

IAP President-Elect 2022



#### © Indian Academy of Pediatrics

#### **IAP Standard Treatment Guidelines Committee**

Chairperson

Remesh Kumar R

**IAP Coordinator** 

**Vineet Saxena** 

**National Coordinators** 

SS Kamath, Vinod H Ratageri

**Member Secretaries** 

Krishna Mohan R, Vishnu Mohan PT

Members

Santanu Deb, Surender Singh Bisht, Prashant Kariya, Narmada Ashok, Pawan Kalyan

#### Practicing Pearls for Sickle Cell Disease Management

46

## Definition

- ☑ Sickle cell disease (SCD) refers to autosomal recessive group of disorders caused by qualitative mutations in the genes encoding for the beta-globin chain of the adult hemoglobin.
- ☑ This abnormal hemoglobin known as sickle hemoglobin (Hb S), on deoxygenation forms a polymeric structure resulting in deformed, rigid red blood cells leading to chronic hemolytic anemia and vaso-occlusion.
- ☑ It encompasses homozygous sickle cell anemia (SS), sickle cell/hemoglobin C (SC), sickle cell/ $\beta$ -thalassemia (S/ $\beta$  thal), and other compound heterozygous conditions such as sickle D-Punjab, sickle E-thalassemia, and sickle alpha-thalassemia.

Sickle cell belt of India spans across states of Gujarat, Maharashtra, Madhya Pradesh, Chhattisgarh, West Bengal, Odisha, and Andhra Pradesh with the prevalence of heterozygotes ranging from 1 to 40% in many tribal populations.

# **Epidemiology**

## **Diagnosis**

- ✓ Newborn screening
- ☑ High-performance liquid chromatography (HPLC) or Hb electrophoresis in a child with chronic hemolysis/pain crisis
- $\ensuremath{\,\boxtimes\,}$  Genetic mutation analysis.

# List of Investigations Required before Treatment



- ☑ Complete blood count (CBC) with reticulocyte count
- ☑ Extended blood grouping
- ☑ HPLC/Hb electrophoresis of patient and extended family
- ☐ Human immunodeficiency virus (HIV)/hepatitis B surface antigen (HBsAg)/hepatitis C virus (HCV)
- ☑ Renal function test (RFT)
- ☑ Liver function test LFT)
- ☑ Glucose-6-phosphate dehydrogenase (G6PD) test

Sickle cell disease should be considered as a chronic long-term and life-limiting condition with acute exacerbations that have far-reaching disabling consequences for the child and family. Hence, it requires a multidisciplinary and comprehensive teamwork to provide optimum treatment for health maintenance, acute care, and monitoring of disease-modifying therapy to SCD patients.

This team consists of pediatrician, hematologist, immunohematologist, intensivist, psychologists, social workers, etc.

#### Nonpharmacological Measures

- ☑ Parent education about disease, complications, treatment, and cure of SCD.
- ☑ Advise to maintain hydration.
- ☑ Avoid extreme cold, heat exposure, and heavy exercises.
- ☑ Diet rich in omega-3 fatty acids, vitamin A, and zinc may be advised.
- ☑ No role of vitamin C and E supplementation or sodium bicarbonate in routine management of SCD.

#### Immunization in Sickle Cell Disease

Apart from all routinely recommended vaccines, children with SCD must be administered pneumococcal (both conjugate and polysaccharide), *Haemophilus influenzae* B, meningococcal, and typhoid vaccines as per The Indian Academy of Pediatrics (IAP) guidelines.

#### Antibiotic Prophylaxis

Health Maintenance

- ☑ Oral penicillin V prophylaxis should be offered to all SCD patients starting from 90 days of life to 5 years of age (**Table 1**).
- ☑ Continue prophylactic penicillin beyond 5 years of age if child has undergone a splenectomy or had an invasive pneumococcal disease.

| <b>TABLE 1:</b> Age, dose, and frequency for antibiotic prophylaxis. |         |             |  |  |
|----------------------------------------------------------------------|---------|-------------|--|--|
| Age                                                                  | Dose    | Frequency   |  |  |
| <1 year                                                              | 62.5 mg | Twice daily |  |  |
| 1–5 years                                                            | 125 mg  | Twice daily |  |  |
| >5 years                                                             | 250     | Twice daily |  |  |

#### Role of Hydroxyurea in Sickle Cell Treatment

- ☑ When to start treatment in SCD?
  - The use of hydroxyurea (HU) is a mainstay in the overall management in SCD, since it reduces the incidence of acute painful episodes and hospitalization rates, and prolongs survival.

Health Maintenance

• In infants 9 months of age and older, children, and adolescents with sickle cell anemia (SCA), offer treatment with HU regardless of clinical severity.

#### ☑ What is the dose of HU?

- Begin at 10-15 mg/kg/day single dose (round up to the nearest 500 mg). Monitor counts every 4 weeks initially to maintain absolute neutrophil count (ANC) > 2,000 and a platelet count >  $100,000/\text{mm}^3$ .
- The dose may be escalated gradually to a maximum of 35 mg/kg/day if indicated clinically.
- In case of neutropenia and/or thrombocytopenia, withhold the drug, monitor the counts weekly till recovery and restart at a lower dose (5 mg/kg lower than the ongoing dose).
- Continue to monitor CBC, reticulocyte counts, RFT, and LFT quarterly once a stable or maximum tolerated dose is achieved.

#### Folic Acid

About 1–5 mg/day of folic acid is to be given to all children with SCD.

Indications of Blood Transfusion in Sickle Cell Disease (Table 2)

| TABLE 2: Indications of blood transfusion in sickle cell disease.                                                          |                                              |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|
| Acute conditions for blood transfusion                                                                                     | Conditions for long-term transfusion therapy |  |  |  |
| Acute clinical stroke                                                                                                      | Primary/secondary stroke prevention          |  |  |  |
| Acute chest syndrome                                                                                                       | Recurrent acute chest syndrome               |  |  |  |
| <ul><li>☑ Acute symptomatic anemia</li><li>☑ Parvovirus B19 infection</li><li>☑ Splenic or hepatic sequestration</li></ul> | Recurrent vaso-occlusive crises              |  |  |  |
| Pregnancy                                                                                                                  | Pulmonary hypertension (PH)                  |  |  |  |
| Preoperative                                                                                                               | Progressive organ failure                    |  |  |  |

#### Iron Overload

- ☑ Patients on chronic blood transfusion therapy develop mainly hepatic iron overload. Cardiac and gonadal damage is uncommon in SCD.
- ☑ Serum ferritin can be used for monitoring iron overload.
- ☑ Liver iron concentration (LIC) can be measured by T2\*MRI for patients > 10 years of age.
- ✓ Iron chelation should be initiated:
  - After 10–12 transfusions
  - Serum ferritin > 1,000 μg/L
  - LIC > 7 mg/kg dry weight of liver
- ☑ Desferrioxamine (20–40 mg/kg/day) and deferasirox (20–40 mg/kg/day) are licensed for use in SCD.

**Acute Pain Crisis** 

## Management of Acute Complications

#### **BOX 1:** Red flag signs to consult healthcare facility.

- ☑ Acute severe febrile illness
- ☑ Newly palpable spleen or increasing size of a previously enlarged spleen
- ☑ Significant respiratory symptoms (e.g., difficulty breathing, shortness of breath, severe cough, and chest pain)
- ☑ Severe abdominal pain, particularly if located in the right upper quadrant
- ☑ Neurologic symptoms, even if transient (e.g., facial droop or asymmetry, slurred speech, weakness or numbness in the arms or legs, and seizure)
- ☑ Priapism lasting >4 hours
- ☑ Significant increase in pallor, fatigue, lethargy, or jaundice
- ☑ Pain not adequately controlled by home medications
- ☑ Assess the pain intensity using a visual analog scale (e.g., Wong–Baker faces scale).
- ☑ Identify and avoid factors that regularly trigger pain.
- ☑ Mild-to-moderate pain can be managed at home.
- ☑ Patients presenting to emergency should receive optimal pain relief within 30–60 minutes of admission.
- ☑ The longer the pain persists, the more challenging it is to control pain—use a step-down approach instead of a step-up one.
- ☑ Risk of opioid addiction should not be the ground to withhold opioids.

| <b>TABLE 3:</b> Treatment of acute pain crisis. |                                                   |                                                           |  |  |
|-------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|--|--|
| Drug                                            | Dose                                              | Comments                                                  |  |  |
| Paracetamol                                     | Oral 15 mg/kg/dose q6–8 hourly IV: 10 mg/kg/dose  | Use with caution in hepatic dysfunction                   |  |  |
| Ibuprofen                                       | Oral: 5–10 mg/kg/d                                | Use with caution in renal dysfunction                     |  |  |
| Codeine                                         | Oral: 0.5–1 mg/kg/dose q4 hourly                  | Use with caution in hepatic dysfunction                   |  |  |
| Tramadol                                        | IV/oral: 1 mg/kg/dose q8 hourly                   | Use laxatives liberally. Watch for respiratory depression |  |  |
| Morphine                                        | IV/subcutaneous<br>0.1–0.2 mg/kg/dose q2–4 hourly | Use laxatives liberally. Watch for respiratory depression |  |  |
| Ketamine                                        | IV infusion: 0.3 mg/kg/h                          | Maximum 1 mg/kg/h                                         |  |  |

#### Acute Febrile Illness

- Children with SCD are immunocompromised due to splenic hypofunction and are at risk of life-threatening infections, particularly with encapsulated organisms.
- ☑ A CBC, reticulocyte count, blood culture, and other specific tests should be done to look for focus of infection, e.g., chest X-ray in acute chest syndrome (ACS), X-ray local part for localized bone pain, etc.

**Management of Acute Complications** 

- ☑ Empiric parenteral antibiotics are required in all children with SCD and fever.
- ☑ *Ceftriaxone*: 50–100 mg/kg/day IV (maximum 2 g) should be given within 1 hour of fever.

#### Clinical Stroke

- ☑ Can present with focal neurological deficits
- ☑ IV hydration and exchange transfusion to reduce Hb S to <30% of total hemoglobin.

#### Acute Chest Syndrome

- ACS presents as fever, pain (chest, extremities, and ribs), and dyspnea with new radiodensity on chest X-ray can be triggered by infection.
- - Effective pain control
  - Adequate oxygenation to maintain a target oxygen saturation ≥ 95%
  - Empiric antibiotics—used regardless of whether fever is present (a macrolide plus a third-generation cephalosporin)
  - Blood transfusion/exchange depending on the hematocrit (to be done at a specialized center).

#### Acute Anemia

A sudden drop in Hb can occur due to transient aplastic crisis, hyperhemolytic crisis, or splenic sequestration.

#### Flowchart 1



Management

Hematopoietic stem cell transplantation is the only curative option for SCD patients as of today and should be offered only after a detailed discussion between pediatrician, hematologist, and a specialist transplant team with the family.

- ☑ Regular growth monitoring
- ☑ Monitoring of nutritional status
- ☑ Maintenance of pain crisis diary
- ☑ Regular palpation of spleen of older children.

| TABLE 4: Parameters to monitor.                                        |                                                            |                                                                                                                                   |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Investigation                                                          | Frequency                                                  | Comments                                                                                                                          |  |  |
| CBC with reticulocyte count                                            | 3 monthly                                                  | To see response of HU<br>Monitor ANC and platelet count for HU<br>side effects                                                    |  |  |
| Renal function test                                                    | 3 monthly                                                  | Adverse effects of HU<br>Renal complications of SCD                                                                               |  |  |
| Liver function test                                                    | 3 monthly                                                  | Adverse effects of HU                                                                                                             |  |  |
| Transcranial Doppler                                                   | Annually after 2 years of age                              | For stroke prevention and screening                                                                                               |  |  |
| BP and oxygen saturation measurements                                  | Every visit                                                | Screening for cerebrovascular disease (CVD), obstructive sleep apnea (OSA), pulmonary hypertension, and chronic pulmonary disease |  |  |
| Overnight oxygen saturation measurement                                | Low oxygen saturation in OPD visit                         | Screening for CVD and OSA                                                                                                         |  |  |
| Pulmonary function tests                                               | Low oxygen saturation (<95%)                               | Rule out chronic sickle pulmonary complications                                                                                   |  |  |
| 2D echocardiography                                                    | Low oxygen saturation and evidence of chronic lung disease | Screening for pulmonary hypertension                                                                                              |  |  |
| Urine analysis and specific gravity, urine albumin by creatinine ratio | Annually after 3–5 years of age                            | To screen renal complications of SCD                                                                                              |  |  |
| HIV/HBsAg/HCV                                                          | Annually                                                   | Children requiring intermittent or regular transfusions                                                                           |  |  |
| T2*MRI heart and liver                                                 | Annually                                                   | Evaluation of iron overload status                                                                                                |  |  |
| Ferritin                                                               | 3–6 monthly                                                | Evaluation of iron overload status                                                                                                |  |  |
| Retina screening                                                       | Annually after 10 years of age                             | To detect early proliferative sickle retinopathy                                                                                  |  |  |
| MRI scans                                                              | Persistent painful hips or shoulders                       | To rule out avascular necrosis                                                                                                    |  |  |
| Psychological, educational, and social interventions                   | Annually or when required                                  | Improve quality of life. Assess cognitive abilities and behavioral issues                                                         |  |  |

(ANC: absolute neutrophil count; BP: blood pressure; CBC: complete blood count; HBsAg: hepatitis B surface antigen; HCV: hepatitis C virus; HIV: human immunodeficiency virus; HU: hydroxyurea; OPD: outpatient department; SCD: sickle cell disease)

Role of Prenatal Testing in Sickle Cell Disease

Prevention of the disease can be done through carrier identification, genetic counseling, and prenatal diagnosis.

☑ Acute and complicated sickle crises

- ☑ Routine comprehensive multidisciplinary care
- ☑ Genetic counseling
- ✓ Pregnancy.

Indications of Tertiary Care Referral

Future Perspective

- ☑ *Crizanlizumab*: A monoclonal antibody against P-selectin prevents vaso-occlusive crises (VOCs) in SCD
- ☑ Voxelotor—HbS polymerization inhibitor
- ☑ Gene therapy.

- ☑ Delesderrier E, Curioni C, Omena J, Macedo CR, Cople-Rodrigues C, Citelli M. Antioxidant nutrients and hemolysis in sickle cell disease. Clin Chim Acta. 2020;510:381-90.
- ☑ Dick M, Rees D. Sickle Cell Disease in Childhood: Standards and Recommendations for Clinical Care, 3rd edition. Public Health England: Sickle Cell Society; 2019.
- ☑ Halsey C, Roberts IA. The role of hydroxyurea in sickle cell disease. Br J Hematol. 2003;120:177-86.
- ☑ National Heart, Lung, and Blood Institute. (2014). Evidence-based Management of Sickle Cell Disease: Expert Panel Report, 2014. [online] Available from: https://www.nhlbi.nih.gov/healthtopics/evidence-based-management-sickle-cell-disease. [Last accessed April; 2022].
- ☑ National Institutes of Health National Heart, Lung, and Blood Institute Division of Blood Diseases and Resources NIH Publication; 2002.
- ☑ Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376:2018.
- ☑ Thompson BW, Miller ST, Rogers JR, Rees RC, Ware RE, Waclawiw MA, et al. The Pediatric Hydroxyurea Phase III Clinical Trial (BABY HUG): Challenges of Study Design. Pediatr Blood Cancer. 2010;54(2):250-5.